Water gas is a kind of fuel gas, a mixture of carbon monoxide and hydrogen. It is produced by "alternately hot blowing a fuel layer coke with air and gasifying it with steam".
The reaction is endothermic, so the fuel must be continually re-heated to maintain the reaction. To do this, an air stream, which alternates with the vapor stream, is introduced to combust some of the carbon:
Theoretically, to make 6 L of water gas, 5 L of air is required. Alternatively, to prevent contamination with nitrogen, energy can be provided by using pure oxygen to burn carbon into carbon monoxide.
In this case, 1 L of oxygen will create 5.3 L of pure water gas.
Between 1794 and 1802, physicians such as Tiberius Cavallo and Davies Gilbert experimented with hydrocarbonate as an analgesic and anesthetic. Humphry Davy infamously inhaled three quarts of hydrocarbonate at the Pneumatic Institution and nearly died upon "sinking into annihilation"; Davy recovered two days later and concluded inhalation of more hydrocarbonate could have "destroyed life immediately without producing any painful sensations". He was right: carbon monoxide poisoning can be fatal.
Diseases treated by hydrocarbonate included: tuberculosis, inflammation, asthma, expectoration, hemoptysis, pneumonia, hydrothorax, spasm and other indications. Many of the diseases treated with hydrocarbonate, whose active ingredient was carbon monoxide, are now being investigated using modern biomedical research methods to determine the therapeutic potential of carbon monoxide. For example, James Lind recognized hydrocarbonate to effectively treat lung inflammation; delivery of carbon monoxide via inhalation protocol or carbon monoxide-releasing molecules has significant preclinical data indicating an effective treatment for inflammation. The pioneering work of exploratory medicinal application of hydrocarbonate is an important origin for modern drug development.
James Watt suggested hydrocarbonate could act as "an antidote to the oxygen in blood" in 1794 and cautioned about the toxicity of an overdose prior to the discoveries of carbon monoxide (1800) and hemoglobin (1840). Despite Watt's observation, it is widely accepted that Claude Bernard had first described the mechanism for carbon monoxide poisoning by describing carbon monoxide's affinity for hemoglobin displacing oxygen to induce asphyxia circa 1857.
The process was discovered by passing high-pressure steam over hot coal, the major source of coke gas. Lowe's process improved upon the chimney systems by which the coal could remain superheated, thereby maintaining a consistently high supply of the gas. The reaction produced carbon dioxide and hydrogen, which, after a process of cooling and "scrubber", produced hydrogen gas.
The process spurred on the industry of gas manufacturing, and gasification plants were established quickly along the eastern seaboard of the United States. Similar processes, like the Haber process, led to the manufacture of ammonia (NH3) by the combining of nitrogen, found in air, with hydrogen. This spurred on the refrigeration industry, which long used ammonia as its refrigerant. Lowe also held several patents on artificial ice making machines and was able to run successful businesses in cold storage, as well as products which operated on hydrogen gas.
|
|